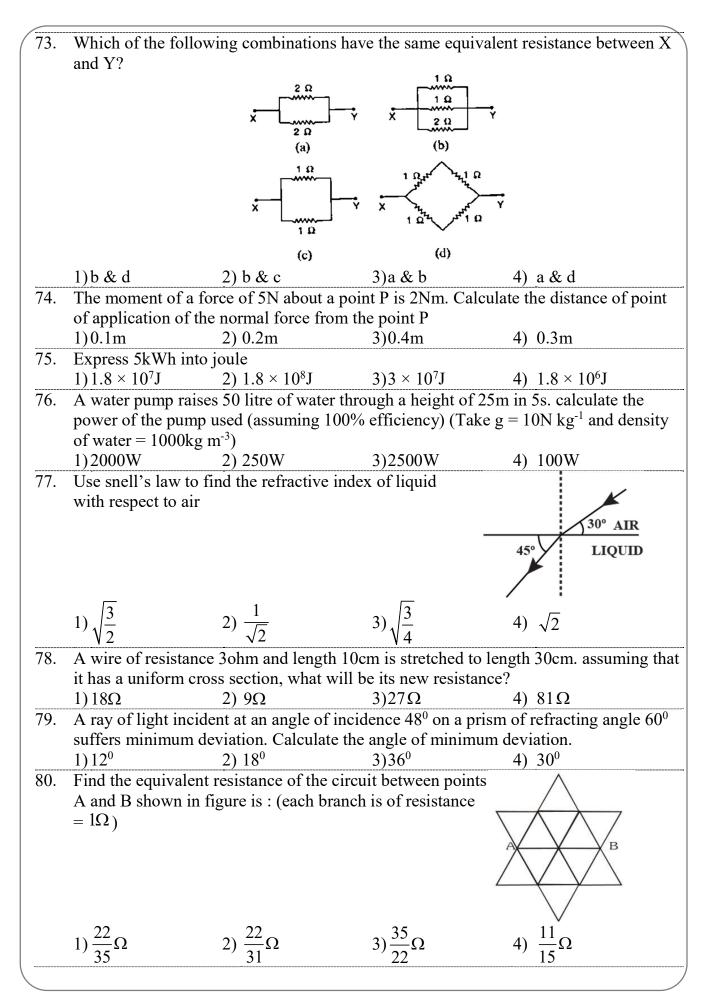

NSTRUCTIONS . ATTEMPT ALL QUESTIONS W	NUMBER OF QUESTIO	DNS : 100 TIME : 2 Hrs
ATTEMPT ALL OUESTIONS (EACH QUESTION CARRIES 1 NO NEGATIVE MARKS. DON'T DO ROUGH WORK O USE BLACK (OR) BLUE PEN	I MARK	
CORRECT METHOD OF BUBBLING	c	
	INTO 10+1 IC MATHEMATIC	
	ve positive odd numbers i 2 3)13	f the sum of their squares is 74 4) -13
If $A = \begin{bmatrix} 3 & -2 \\ 7 & 4 \end{bmatrix}$ then $A - A^{T}$ (1) $\begin{bmatrix} 0 & 9 \\ 2 & 2 \end{bmatrix}$ (0)	(where A^{T} is transpose of $\begin{pmatrix} 0 & -9 \\ 0 & 0 \end{bmatrix}$ $\begin{pmatrix} 0 & 3 \\ -3 & 0 \end{bmatrix}$	
$\begin{bmatrix} -9 & 0 \end{bmatrix}$	$\begin{bmatrix} -3 \end{bmatrix}$	
$\begin{bmatrix} -9 & 0 \end{bmatrix}$ The line 2x-y=6 passes thr		
The line $2x-y=6$ passes thr 1) 5 2) 4	rough the point (K,6) then 3)2	the value of K is 4) 6
The line 2x-y=6 passes thr1) 52) 4Two circles of radii 5 cm a	rough the point (K,6) then 3)2 and 4 cm are concentric .7	the value of K is
The line 2x-y=6 passes thr 1) 5 2) 4 Two circles of radii 5 cm a circle which touch the inne	rough the point (K,6) then 3)2 and 4 cm are concentric .7 er circle is	the value of K is 4) 6 The length of the chord of the c
The line 2x-y=6 passes thr1) 52) 4Two circles of radii 5 cm acircle which touch the inne1) 82) 9	rough the point (K,6) then 3)2 and 4 cm are concentric .T er circle is 3)6	the value of K is 4) 6
The line 2x-y=6 passes thr 1) 5 2) 4 Two circles of radii 5 cm a circle which touch the inne	rough the point (K,6) then 3)2 and 4 cm are concentric .T er circle is 3)6	the value of K is 4) 6 The length of the chord of the c
The line $2x-y=6$ passes thr1) 52) 4Two circles of radii 5 cm acircle which touch the inne1) 82) 9The mode of 2,2,3,5,5,5,6,1) 22) 3	rough the point (K,6) then 3)2 and 4 cm are concentric .T er circle is 3)6 ,8,3 is 3)5	the value of K is 4) 6 The length of the chord of the c 4) 10
The line $2x-y=6$ passes thr1) 52) 4Two circles of radii 5 cm acircle which touch the inne1) 82) 9The mode of 2,2,3,5,5,5,6,1) 22) 3The solution set of y if $2y$	rough the point (K,6) then 3)2 and 4 cm are concentric .T er circle is 3)6 ,8,3 is 3)5	the value of K is 4) 6 The length of the chord of the c 4) 10 4) 6 e y is a positive odd integer
The line $2x-y=6$ passes thr1) 52) 4Two circles of radii 5 cm acircle which touch the inne1) 82) 9The mode of 2,2,3,5,5,5,6,1) 22) 3The solution set of y if $2y$	rough the point (K,6) then 3)2 and 4 cm are concentric .T er circle is 3)6 (8,3 is 3)5 $-4 \le y + 2 \le 3y + 6$, where (3, 5) 3) {0, 1, 3}	the value of K is 4) 6 The length of the chord of the c 4) 10 4) 6 e y is a positive odd integer 5, 5} 4) $\{1, 3, 5, 7\}$
The line $2x-y=6$ passes thr1) 52) 4Two circles of radii 5 cm acircle which touch the inner1) 82) 9The mode of 2,2,3,5,5,5,6,1) 22) 3The solution set of y if $2y$ 1) {1, 3}2) {1From the graph given, write	rough the point (K,6) then 3)2 and 4 cm are concentric .T er circle is 3)6 (8,3 is 3)5 $-4 \le y + 2 \le 3y + 6$, where (3, 5) 3) {0, 1, 3}	the value of K is 4) 6 The length of the chord of the c 4) 10 4) 6 e y is a positive odd integer 5, 5} 4) $\{1, 3, 5, 7\}$ as the variable
The line $2x-y=6$ passes thr1) 52) 4Two circles of radii 5 cm acircle which touch the inner1) 82) 9The mode of 2,2,3,5,5,5,6,1) 22) 3The solution set of y if $2y$ 1) {1, 3}2) {1From the graph given, write	rough the point (K,6) then 3)2 and 4 cm are concentric .T er circle is 3)6 (8,3 is 3)5 $-4 \le y + 2 \le 3y + 6$, where (3,5) (0,1,3) te an inequation taking x a (3, -4, -3, -2, -1, 0, 1, 2)	the value of K is 4) 6 The length of the chord of the c 4) 10 4) 6 e y is a positive odd integer 5, 5} 4) $\{1, 3, 5, 7\}$ as the variable

		2		
8.	If $x = \frac{\sin^3 p}{\cos^2 p}$, $y =$	$\frac{\cos^3 p}{\sin^2 p}$ and $\sin p$	$p + \cos p = \frac{1}{2}$ then $x + \frac{1}{2}$	y =
	$1)\frac{79}{19}$	75	2 44	48
	$\frac{1}{18}$	2) $\frac{75}{18}$	$3)\frac{44}{9}$	4) $\frac{48}{9}$
9.	What is the small	est possible natu	ral number n for which	the equation
	$x^2 - nx + 2014 =$	-		I
	1)89	2) 91	3)75	4) 68
10.	If $\frac{1}{3}$ and 1 are the	solutions of the	equation $mx^2 + nx + 6 =$	= 0 then $m - n =$
	1)-12	2) 10	3)30	4) 42
11.				ots then the values of m are
	(/	/	
12.	$\frac{1}{3, 5, 2}$ The quadratic equ		3 $\{-3, 51\}$	4) {-3, -31}
12.	* *			(2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
				$3 = 0 4) 4x^2 - 20x + 18 = 0$
13.	The value of x sat	tisfying the equa	tion $\frac{x}{x+1} + \frac{x+1}{x} = 2\frac{1}{2}$	
	1)2, -1		3)-2, -1	
14.			square, E, F are points o	on DC and BC if
	$\angle AFB = 70^0$ and	$\angle EAF = 45^0$ the	$n \angle AEF?$	
			D E C	
			x ⁰ 70 ⁰ F	
	1)70 ⁰	/	, e v	4) 65 ⁰
15.	If $x = \sec \theta - \tan \theta$	-	•	
	1) $\frac{1+x}{1+x}$	2) $\frac{1-x}{1-x}$	$3)\frac{x}{1-x}$	(1) $\frac{x}{x}$
	1 - x	$\frac{2}{1+x}$	$\frac{3}{1-x}$	-7 1+x
16.	The perimeter of	a rectangle is 11	0m and its area is 750m	² then its diagonal is
	1) $5\sqrt{21}$	2) 20	3)35	4) $5\sqrt{61}$
17.	The sum of two n	atural numbers v	which differ by 6 and su	m of their squares is 146 is
	1)15	2) 16	3)17	4) 18
18.	The product of th	e digits of a two	digit number is 27. If it	s units digit exceeds twice its
	-	-	igits of the number is	C
	1)9	2) 12	3)14	4) 15
19.	The sum of first '	n' even natural r	numbers is 600 then the	value of 'n' is
	1)25	2) 20	3)30	4) 24
20.	If α, β are roots	of $x + \frac{1}{r} = \frac{5}{2}$ then	n the value of $\alpha\beta$ is	
	1)1	$2) 2^{x} 2^{2}$	3)3	4) -2
	<u> </u>		5,5	<u> </u>


21.	Find the common difference of the		
	$\frac{1}{5}$ $\frac{2}{5}$	3)3	4) -3
22.	Degree of $(x-a)(x-b)(x-c)$		
	$\frac{1}{10}$ $\frac{2}{1}$ $\frac{1}{10}$	<u>3)26</u>	4) Does not exist
23. If a letter is drawn at random from letters of the w probability of getting M			HEMATICS, find the
		3	1
	1) $\frac{1}{11}$ 2) $\frac{2}{11}$	$3)\frac{3}{11}$	4) $\frac{1}{8}$
24.	If $x + 2$ is a factor of $x^2 + 5x + 2a =$	= 0 then a $=$	
	1)-3 2) 3	3)4	4) –2
25.	If $A = \begin{bmatrix} 8 & -6 \\ 4 & -2 \end{bmatrix}$, $B = \begin{bmatrix} 3 & 5 \\ -1 & 0 \end{bmatrix}$ and X	is a 2×2 matrix such the	at $A + X = B$ then $X =$
	$1)\begin{bmatrix} -5 & 11 \\ -5 & -2 \end{bmatrix} \qquad 2)\begin{bmatrix} -5 & 11 \\ 5 & 2 \end{bmatrix}$	$3)\begin{bmatrix} -5 & 11 \\ 5 & -2 \end{bmatrix}$	$4) \begin{bmatrix} -5 & 11 \\ -5 & 2 \end{bmatrix}$
26.	If $A = \begin{bmatrix} -2 & 3 \\ 4 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix}$ then	n BA =?	
	$1)\begin{bmatrix} 7 & 11 \\ 7 & 13 \end{bmatrix} \qquad 2)\begin{bmatrix} 6 & 5 \\ 14 & 14 \end{bmatrix}$	$3)\begin{bmatrix} 15 & 22\\ 5 & 10 \end{bmatrix}$	$4) \begin{bmatrix} 15 & 5\\ 22 & 10 \end{bmatrix}$
27.	How many terms are there in the se	eries 4, 7, 10, 13,,11	8 is
	1)49 2)40	3)39	4) 48
28.	The sum of first 20 terms of the A.	P 1, 3, 5, 7	
	1)650 2)660	3)670	4) 400
29.	If $A = (2,3)$ and $B = (5,7)$ then di	stance between A & B	
	1)25 2)21	3)5	4) 40
30.			
	1) $64(2+\sqrt{2})$ 2) $63(2+\sqrt{2})$	-	
31.	The coordinates of the point of inte	ersection of medians of th	ne triangle ABC;
	given $A = (2, 3), B = (6, 7), C = (-4)$	4, 1)	
	$1)\left(\frac{8}{3},\frac{11}{3}\right) \qquad 2)\left(\frac{4}{3},\frac{4}{3}\right)$	$3)\left(\frac{4}{3},\frac{11}{3}\right)$	$4) \left(\frac{8}{3}, \frac{4}{3}\right)$
32.	If $A = (5, 3)$, $B = (4, 4)$, $C = (7, -3)$. T	The ratio in which B divide	s the line segment \overline{AC} is
	1)-1:3 2)1:3	3)-3:1	
33.	If (K, 6) lies on the line $7x - 4y + 3$ 1)4 2) -3		4) -4
34.	<u>1)4</u> <u>2) -3</u> The slope of the line joining the po		
<i>J</i> 11	1)2 2) -1	3)-2	4) 1
35.	Find the value of $\sin 30^\circ + \cos 90^\circ$		
	1)0.5 2)0.7	3)1	4) -0.5
× .			

44.	$1 - \cos A$			
	$\sqrt{\frac{1+\cos A}{1+\cos A}} =$			
	1) secA + tanA	2) cosecA-cotA	3)secA-tanA	4) cosecA+cotA
45.	·			
	From diagram, if the values of BC = 5m, CD = 20m and $\angle ABE = 60^{\circ}$ then AD =			
			760°	
		B	E	
		5m	rl _n	
		С	<u>—20m</u> D	
	1) $5(4\sqrt{3}+1)m$	2) $5(4-\sqrt{3})m$	$(3)5 + \frac{20}{\pi}m$	4) $5 - \frac{20}{\sqrt{3}}m$
		2) · (· · · ·)	$\sqrt{3}$	$\sqrt{3}$
46.	From diagram if A	$D = 30m, \angle CAD = 3$	$0^0, \angle ABC = 45^0$ the	n the value of BC =
			\bigwedge^{A}	
			A1	
			³⁰⁰ / _{30m}	
		/		
		450	~ Ч^	
		В	C D	
	1) $10(3+\sqrt{3})m$	2) $3(10-\sqrt{3})m$	$3)10(3-\sqrt{3})m$	4) $10 + \sqrt{3}m$
47.		1, <i>x</i> , 5 and 6 is 7 then		
.,.	1)5	2) 7	3)4	4) 6
48.	· · · · · · · · · · · · · · · · · · ·	e values 3, 6, 7, 11, 1	/	
	1)13	2) 6.5		4) 9
49.	If two dice are thro	own simultaneously.	Then the probability	of getting sum of the
	numbers on their u		- •	-
		1	$^{2})^{2}$	1
	$1)\frac{5}{36}$	2) $\frac{1}{6}$	$3)\frac{2}{9}$	4) $\frac{1}{36}$
50.	A ball is drawn at	random from a box co	ontaining 16 white,	12 yellow and 20 pink
	balls. The probabil	ity of not getting yell	ow ball is	
	$1)\frac{1}{2}$	2) $\frac{2}{-}$	$(3)\frac{6}{2}$	4) $\frac{3}{4}$
	$1)\frac{1}{4}$	3		
		GICAL REASONING		
51.		s B's mother. D is C's	s father. E is D's mo	other. Then, how is A
	related to D?			
	· · · · · · · · · · · · · · · · · · ·		-	4) Grand daughter
52.		ans \times , \times means \div and	÷ means +, then	
	$15 \times 3 \div 15 + 5 - 15$			
	1)0	2) 6	3)10	4) 20
				/

53. Kunal walks 10 km towards North. From there he walks 6 km toward			6 km towards South	n. Then, he		
	walks 3 km towa	ards East. How far is	he with reference to	his starting point?		
	1)8 km	2) $3\sqrt{5}km$	3) $\sqrt{109}$ km	4) 5 km		
54.	If the first and th	ird letters in the wor	d NECESSARY we	re interchanged, als	so the	
	fourth and the si	xth letters, and the se	eventh and the ninth	letters which of the	following	
	would be the sev	enth letter from the	left?			
	1)A	2) Y	3)R	4) E		
55.	Reena is twice a	s old as Sunita. Thre	e years ago, she was	three times as old a	as Sunita.	
	How old is Reena now?					
	1)6 years	2) 7 years	3)8 years	4) 12 years		
56.	How many 6's a	re there in the follow			led by 7	
	but not immedia	tely followed by 9?	-	-	·	
	679569768	76786946776	95763			
	1)One	2) Two	3)Three	4) Four		
57.		$ \frown $				
	54	3 8 9 4)			
		24 11 ? 13	7			
	∇					
	A	B C				
	1)117	2) 36	3)32	4) 26		
58.	Which of the fol	lowing figures repre	sents village, distric	, state?		
	$\cap \cap$		\frown	_		
		$21(\bigcirc)$	3)(00)	4)		
			5,00			
59.	Find the odd one	e among the followin	ıg			
	1)Wood	2) Stone	3)Cork 4)p	aper		
60.	Complete the ser	ries 3, 8, 15, 24, ?				
	1)32	2) 33	3)35	4) 40		
			PHYSICS			
61.	A mechanic can	open a nut by applyi	ing a force of 150N	while using a lever	handle of	
	length 40cm. How long a handle is required if he wants to open it by applying a force					
	of only 50N?					
	1)1.2m	2) 1.4m	3)1.8m	4) 2m		
62.	A body is acted upon by two unequal forces in opposite directions, but not in the same					
	line. The effect is that:					
	1) The body will only have rotational motion					
	· •	2) The body will only have translational motion				
	3) The body will have neither rotational motion nor translational motion					
	4) The body will have rotational as well as translation motion					
-	, j ···					

63.	A wheel of diameter 2m is shown in figure with axle at O. A force $F = 2N$ is applied at B in the direction shown in figure. Calculate the moment of force about the point A.			
	at B in the direction	-	alculate the mor	nent of force about the point A.
		F = 2N		
				\backslash
			/	
			• •	
				/
	1) 2 N m al al muia		$\mathbf{\tilde{A}}$	
	1) 2 N-m clockwise		2) 4 N m (4) 2 N m (4)	
64.	3) 4 N m anti clock			anti clockwise
04.	<i>h</i> . The correct state	•	p with an initial	velocity so as to reach a height
		of the ball at the gr	ound is mak	
		of the ball at the grou	_	
	, .	of the ball at the high		
	· · · · ·	of the ball at the high		
65.				ion. The correct statement is:
05.	-	ic energy at each po	-	ion. The context statement is.
	· ·	um kinetic energy a		sition
		num potential energy	-	
			-	s constant throughout the
	motion.	interie una potentiar	energies remains	
66.		nship between mech	anical advantage	e (M.A.), velocity ratio (V.R.)
	and efficiency (η)	-	8	
	• • • • •		A. 3) $\eta = M.A.$	\times V.R. 4) None of these
67.	A concave lens for	ms the image of an o	object which is:	
	1) Virtual, inverted			, upright and diminished
				, upright and enlarged
68.	-			r away from the film must the
			•	distance 100cm from the lens.
	1)28cm	2) 20cm	3)25cm	4) 30cm
69.	The lens of power		2	
	1) Convex of focal 2			Convex of focal length 1.0m
70	3) Concave of foca	<u>v</u>		Concave of focal length 1.0m
70.				cy. Speed of light = $3 \times 10^8 m s^{-1}$
				<i>Hz</i> 4) 3.75×10^{14} <i>Hz</i>
71.		ance between the so	urce and the refl	ector in air, to hear an echo, is
	approximately:	2) $17m$	3)3/m	4) 50m
72.	1)10m Calculate the resist	2) 17m ance of 1km long co	3)34m	4) 50m
12.		-		
	(Specific resistance	e of copper is $1.72 \times$	10 ⁻⁸ Ω m)	
<u> </u>	1) 4Ω	2) 5Ω	3) 5.5Ω	4) 4.5Ω

	CHEMISTRY				
81.	. Among the following which is correct increasing order of density of alkalimetals			nsity of alkalimetals	
	1) Li < K < Na < Rb	2)K < Li < Na < Rb	3) Na < K < Li < Rb	b 4) Rb < K < Na < Li	
82.	If in the future more	e elements are discove	ered (or) artifially sy	nthesized, then the	
	element with the atomic number 165 will be				
	1)Carbon family	2) Nitrogen family	3)Oxygen family	4) None	
83.	Which is double aci	d anhydride of nitrous	s acid and nitric acid	1	
	1)NO	2) N ₂ O	3)NO ₂	4) N ₂ O ₅	
84. The one which is composed of all the three kinds of bonds (i		e kinds of bonds (ic	onic bond, covalent bond		
	and dative bond)				
	1) Sodium chloride		2) Ammonia		
	3) Carbon tetrachlor	ride	4) Ammonium c	hloride	
85.	5. There are three elements E, F, G with atomic number 20, 8, 17. Give the molecular formula of the compound formed between E and G and mention the type of chemic bond				
	1)EG, covalent	2) EG, ionic bond	3)EG ₂ , covalent	4) EG_2 , Ionic bond	
86.	-	Acetic acid dissociate	•	I^+ and 0.1 mole	
	CH_3COO^- . Calcula	te degree of ionisation	n of acetic acid		
	1)33.3%	2) 3.33%	3)66.6%	4) 6.66%	
87.	The salt solution wh	nich does not react wit	h ammonium hydro	xide is	
		2) Zinc nitrate			
88.	• •	If 6 litres of hydrogen and 5.6 litres of chlorine are mixed and exploded, what will be			
	•	gen in the resulting g		4) 22.4L	
89.	1)11.6L The main ore of zin	$\frac{2) 11.2L}{c \text{ is zinc blende, what}}$	3)0.4L	4) 22.4L	
07.	1)ZnO	2) ZnS	3)ZnCO ₃	4) ZnSO ₄	
90 .		hich is prepared by he			
	Lavoisier named it as "muriatic acid". What is its formula				
	$1)H_2SO_4$	2) H ₂ SO ₃	3)HClO ₄	4) HC <i>l</i>	
91.	· · · · · · · · · · · · · · · · · · ·				
	1)CuSO ₄	2) ZnSO ₄	3)FeSO ₄	4) $Fe_2(SO_4)_3$	
92.	Based on given equation, identify, "X" and its colour				
		$3SO_2 \rightarrow X + K_2SO_4 + K_$	-	~	
	1) $K_2 CrO_4$ – Orange	2	2) $Cr_2(SO_4)_3 - C$	Green	
	3) $CrSO_4$ – Yellow		4) <i>CrO</i> ₅ – Red		

	the final composition of the 1) 69% Mg ⁺ , 31% Mg ⁺²	e e	nd 1450KJ/mole respectively,		
	-				
			⁺ , 41%Mg ⁺²		
	$3) 49\% Mg^+, 51\% Mg^{+2}$, ε	⁺ , 71%Mg ⁺²		
94 .	Among	1) 2) / 01015	, , , , , , , , , , , , , , , , , , , ,		
211	e	c) Al_2O_3 d) P	P_2O_5 and e) Cl_2O_7		
		and amphoteric, oxide can be	,		
	1)a, b, c 2) b, e	-	4) e, c, a		
9 5.	· · · · · · · · · · · · · · · · · · ·	reasing covalent character is	represented by		
	1) $BeCl_2 < NaCl < LiCl$	2) <i>BeCl</i> ₂ <	LiCl < NaCl		
	3) <i>NaCl</i> < <i>LiCl</i> < <i>BeCl</i> ,	4) <i>LiCl</i> < <i>l</i>	$NaCl < BeCl_2$		
96 .	The ratio of mass percent	of C and H of an organic co	mpound $(C_x H_y O_z)$ is 6 : 1. If		
	one molecule of the abov	e compound $(C_x H_y O_z)$ cont	tains half as much oxygen as		
	required to burn one molec	ule of compound $C_x H_y$ con	npletely to CO ₂ and H ₂ O. The		
	empirical formula of compo	ound $C_x H_y O_z$ is			
	1) $C_2 H_4 O_3$ 2) $C_3 H_4 O_3$	H_6O_3 3) C_2H_4O	4) $C_{3}H_{4}O_{2}$		
97.	What is the IUPAC name				
	CH_2CN				
	$CH_2 - CH - CH_2$				
	 CN CN				
	1) butane $-1, 2, 3$ – tricarb	onitrite 2) 3-cyano m	hethyl pentane – 1, 5 - dinitrite		
	3) 2-cyano methyl propane		ane tricyanide		
98.		that is 0.01M in HCN and 0			
	$\left(Ka \text{ for } HCN = 6.2 \times 10^{-10}\right)$				
	1) 3.1×10^{10} 2) 6.2	$\times 10^5$ 3) 6.2 $\times 10^{-10}$	4) 3.1×10^{-10}		
99.	$\sqrt{1}$		$\langle \rangle$		
		ин−с-о-⟨О⟩-⟨О			
	1) Position isomers	2) Chain is	omers		
	3) Functional isomers	4) Metame			
100	·····	·	tion using copper electrode, the		
100.	reaction taking place at the		tion using copper cloculoue, the		
	1) $Cu \rightarrow Cu^{+2}_{(aq)} + 2e^{-}$		$2e^- \rightarrow Cu_{(s)}$		
	3) $H^+_{(aq)} + e^- \rightarrow \frac{1}{2} H_{2(g)}$		$\rightarrow SO_{3(g)} + \frac{1}{2}O_{2(g)} + 2e^{-1}$		
		THE END			