INSTRUCTIONS

NUMBER OF QUESTIONS: 100

TIME: 2 Hrs

- 1. ATTEMPT ALL QUESTIONS WITHIN THE TIME.
- 2. EACH OUESTION CARRIES 1 MARK
- **3. NO NEGATIVE MARKS.**
- 4. DON'T DO ROUGH WORK ON OUESTION PAPER AND OMR.
- 5. USE BLACK (OR) BLUE PEN FOR BUBBLING ON OMR.

CORRECT METHOD OF BUBBLING

MATHEMATICS

- 1. The [HCF \times LCM] for the numbers 50 and 20 is
 - 1.10

- 2. 100
- 3.1000
- 4. 50

- If a, b are coprime, then a², b² are
 - 1. Coprime
- 2. Not coprime
- 3. Odd numbers
- 4. Even numbers
- Which of the following is not an irrational number? 3.
 - $1.5 \sqrt{3}$
- 2. $\sqrt{5} + \sqrt{3}$
- 3. $4 + \sqrt{2}$
- 4. $5+\sqrt{9}$

- $n^2 1$ is divisible by 8, if n is
 - 1. An integer
- 2. A natural number 3. An odd integer 4. An even integer
- How many prime factors are there in prime factorization of 5005 5.
 - 1.2

2. 4

3.6

- 4. 7
- If 1 is zero of the polynomial $p(x) = ax^2 3(a 1)x 1$, then the value of 'a' is 6.
 - 1.1

2. -1

- The degree of the polynomial $(x + 1) (x^2 x x^4 + 1)$ is 7.

- 4. 5
- The number of polynomials having zeroes -2 and 5 is 8.
 - 1.1

2. 2

3.3

- 4. More than 3
- 9. The pair of linear equations -5x + 2y = 8 and 2x - 5y - 3 = 0 have
- 1. No solution
- 2. One solution
- 3. Two solution
- 4. Many solution

	10.		3x + 2ky = 2 and 2x	+ 5y + 1 = 0 are par	rallel, then the value of k			
		is						
		1. $\frac{-5}{4}$	2. $\frac{2}{5}$	$3.\frac{15}{4}$	4. $\frac{3}{2}$			
	11.	If a pair of linear eq	uations is consistent,	then the lines will b	oe			
		1. Parallel		2. Always coinc	cident			
		3. Intersecting or co	oincident	4. Always inters	secting			
	12.	If $x = a$, $y = b$ is the	solution of the equat	ion x - y = 2 and x	+ y = 4, then the values of			
		a and b are, respecti	ively					
		1. 3 and 5	2. 5 and 3	3.3 and 1	4. -1 and -3			
	13.	The lengths of the d	liagonals of a rhombu	s are 24cm and 32c	m. The perimeter of the			
		rhombus is						
		1. 9cm	2. 128cm					
	14	In $\triangle LMN$, $\angle L = 60^{\circ}$	$^{\circ}$, \angle M = 50 $^{\circ}$. If \triangle LMN $^{\circ}$	$\sim \Delta PQR$, then the value	of ∠R is			
		1.40^{0}	$2. 30^{0}$	3.70^{0}	4. 110^{0}			
	15.	If ΔABC is right an	gled at A, then value	of tan B × tan C is				
		1.0	2. 1	31	4. 2			
	16.	Which of the follow	ving are not the sides	of a right triangle				
		1. 9cm, 15cm, 12cm	1	2. 2cm, 1cm, $\sqrt{3}$	2cm, 1cm, $\sqrt{5}$ cm			
		3. 400mm, 300mm,	500mm	4. 9cm, 5cm, 7cm				
	17.	The value of $\frac{2 \tan 3}{1 - \tan^2}$	$\frac{30^{\circ}}{30^{\circ}}$ equals to					
		1. $\cos 60^{\circ}$	2. $\sin 60^{0}$	3. Tan 60 ⁰	4. $\sin 30^{\circ}$			
	18.	If $2 \sin 2\theta = \sqrt{3}$, the	en the value of θ is					
		1.90^{0}	$2. 30^{0}$	3.45^{0}	4. 60^{0}			
	19.	If $\cos A + \cos^2 A =$	1, then $\sin^2 A + \sin^4 A$	A is				
		1. –1	2. 0	3.1	4. 2			
	20.	If $3 \cos \theta = 1$, then t	the value of $\csc\theta$ is					
		1. $2\sqrt{2}$	2. $\frac{3}{2\sqrt{2}}$	$3. \frac{2\sqrt{3}}{3}$	4. $\frac{4}{3}\sqrt{2}$			
1								

21.	If $\cot \theta = \frac{7}{8}$, the val	ue of $\frac{(1+\cos\theta)(1-\cos\theta)}{(1-\sin\theta)(1+\sin\theta)}$	$(\frac{\theta}{\theta})$ is			
	1. $\frac{49}{64}$	2. $\frac{8}{7}$	$3.\frac{64}{49}$	4. $\frac{7}{8}$		
22.	If $\tan (A - B) = \frac{1}{\sqrt{3}}$	and $\sin A = \frac{1}{\sqrt{2}}$, then	n the value of B is			
	1. 45 ⁰	2. 60 ⁰	3.0^{0}	4. 15 ⁰		
23.	Which of the follow	ving is not a measure	of central tendency			
	1. Mean	2. Median	3. Range	4. Mode		
24.	The arithmetic mea	n of 1, 2, 3,,n is				
	1. $\frac{n-1}{2}$	2. $\frac{n+1}{2}$	3. $\frac{n}{2}$	4. $\frac{n}{2}+1$		
25.	Average of first ten	prime numbers is				
	1. 12.6	2. 12.9	3.13.9	4. 14.9		
26.	The roots of the equ	uation $x^2 - \sqrt{3}x - x + \sqrt{3}$	= 0 are			
	1. $\sqrt{3}$,1	2. $-\sqrt{3}$,1	$3\sqrt{3}, -1$	4. $\sqrt{3}$, -1		
27.	The roots of the equ	uation $ax^2 + x + b = 0$	are equal if			
	1. $b^2 = 4a$	2. $b^2 < 4a$	$3. b^2 > 4a$	4. $ab = \frac{1}{4}$		
28.	Which of the follow	ving is not a quadratic	equation			
	1. $(x-2)^2 + 1 = 2x - 3$		2. $x(x+1)+8=(x+2)(x-2)$			
	3. $x(2x+3)=x^2+1$		4. $(x+2)^3 = x^3 - 4$			
29.	The positive root of	$\int \sqrt{3x^2 + 6} = 9 \text{ is}$				
	1.3	2. 4	3.5	4. 7		
30.	The value of p for v	which the quadratic eq	$\frac{1}{\text{quation } x(x-4) + p = 0}$	0 has real roots, is		
	1. $p \le 4$		2. $p \ge 4$			
	3. $p \neq 4$		4. Cannot be de	termined		
31.	The 4 th term from the	he end of A.P. –11, –	8, -5,49 is			
	1. 37	2. 40	3.43	4. 58		
32.	If $p - 1$, $p + 3$, $3p -$	- 1 are in A.P. then p i	s equal to			
	1.4	2. –4	3.2	42		

33.	Which term of the	e A.P. 100, 90, 80,	. Is zero?	
	1. 5 th	2. 6 th	3. 10 th	4. 11 th
34.	How many paralle	el tangents can a circ	le have?	
	1. 1	2. 2	3. Infinite	4. None of these
35.	The length of tang	gent drawn from a po	int 8cm away fron	n the centre of a circle of
	radius 6cm is			
	1. $\sqrt{5}$ cm	2. $2\sqrt{5}$ cm	3.5cm	4. $2\sqrt{7}$ cm
36.	Number of tangen	nts to a circle which a	re parallel to a sec	ant is
	1. 1	2. 2	3.3	4. Infinite
37.	ABC is an equilat	eral triangle of side a	a cm. The radius of	f its in – circle is:
			Â	
		В	\triangle	
			2	
	$1. \frac{a}{\sqrt{3}}cm$	2. $\sqrt{3}acm$	$3. \frac{2a}{\sqrt{3}}cm$	$4. \frac{a}{2\sqrt{3}}cm$
38.	The circumference	e of a circle is 44cm.	Then the area of c	eircle is
	1. 276cm ²	2. 44cm ²	3.176cm ²	4. 154cm ²
39.	The angle through	which the minute ha	and of the clock m	oves from 8 to 8 : 35 is
	1.210^{0}	$2. 90^{0}$	3.60^{0}	4. 45°
40.	The radii of the ba	ase of cylinder and a	cone of the same h	neight are in the ratio 3:4.
	The ratio of their	volumes is		
	1.9:8	2. 9:4	3.3:1	4. 27:16
41.	The curved surfac	e area of a right circ	ular cone of height	15cm and base diameter
	16cm is			
	$1.60\pi \text{ cm}^2$	2. $68\pi \text{ cm}^2$	$3.120\pi \text{ cm}^2$	4. $136\pi \text{ cm}^2$
42.	A pole 10m high of	cast a shadow 10m lo	ong on the ground,	then the sun's elevation is
	1.60^{0}	2. 45 ⁰	3.30^{0}	4. 90^{0}
43.	A tree casts a shace	dow 4m long on the §	ground, when the a	ngle of elevation of the sun is
	45 ⁰ . The height of	the tree (in metres)	is	
	ie i mengine or	, , , , , , , , , , , , , , , , , , , ,		
	1. 3	2. 4	3.4.5	4. 5.2

44.	If points (a, 0), (0, b	and (1, 1) are colling	ear, then $\frac{1}{a} + \frac{1}{b} =$	
	1. –1	2. 1	3.0	4. 2
45.	The distance of the	point P(2, 3) from the	x-axis is	
	1. 2	2. 3	3.1	4. 5
46.	The points $(-4, 0)$,	(4, 0), (0, 3) are the ve	ertices of a	
	1. Right triangle		2. Isosceles triar	ngle
	3. Equilateral triang	le	4. Scalene triang	gle
47.	The fourth vertex D	of a parallelogram A	BCD whose three ve	ertices are A(-2, 3), B
	(6, 7) and C (8, 3) is	S		
	1. (0, 1)	2. (0, -1)	3. (-1, 0)	4. (1, 0)
48.	In a throw of a pair	of dice, what is the pr	obability of getting	a doubler?
	1. $\frac{1}{2}$	2. $\frac{1}{6}$	$3.\frac{5}{12}$	4. $\frac{2}{3}$
<u></u> 49.	<u> </u>	6 getting an number bety		
47.		1	7	10
	100	2. $\frac{1}{7}$		4. $\frac{13}{100}$
50.		$+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{3}}$	$\frac{1}{4+\sqrt{5}} + \frac{1}{\sqrt{5}+\sqrt{6}} + \frac{1}{\sqrt{6}}$	$\frac{1}{5+\sqrt{7}} + \frac{1}{\sqrt{7}+\sqrt{8}} + \frac{1}{\sqrt{8}+\sqrt{9}}$
	is	2 1	2.2	4 4
51.	1.0	2. 1 ving graphs has more t	than three distinct re	4. 4
31.		2. x		
		,		
52.		f linear equations 36x	+ 24y = 702 and 24	-x + 36y = 558 is
	1. $\frac{33}{2}$	2. $\frac{145}{7}$	3.16	4. 17
53.	The roots of the equ	nation $X^{2/3} + X^{1/3} - 2 = 0$	are	
	1. 1, -8	2. 1, -2	$3.\frac{2}{3},\frac{1}{3}$	42,-8
54.	If the m th term of an	A.P. is $\frac{1}{n}$ and n^{th} term	n is $\frac{1}{m}$, then the sum	n of first mn terms is
	1. <i>mn</i> +1	2. $\frac{mn+1}{2}$	3. $\frac{mn-1}{2}$	4. $\frac{mn-1}{3}$

- In the given figure, AB||PQ||CD, AB = x units. CD = y units and PQ = z units, then
 - $\frac{1}{x} + \frac{1}{y} =$

1. $\frac{2}{7}$

- 2. $\frac{1}{7}$
- 3. z^2
- 4. _z
- 56. The coordinates of the centre of a circle passing through (1, 2), (3, -4) and (5, -6) is
 - 1. (2, 11)

- 1. (2, 11) 2. (11, 2) 3. (11, -2) 4. (-2, 11) $\frac{\sqrt{3} + 2\cos A}{1 2\sin A}^{-3} + \left(\frac{1 + 2\sin A}{\sqrt{3} 2\cos A}\right)^{-3} = \underline{\hspace{1cm}}$ 57.
 - 1. 1

- 2. $\sqrt{3}$
- 3.0

- 4. -1
- 58. In the given figure, ABC is a right-angled triangle, right-angled at A. Semicircles are drawn on AB, AC and BC as diameters. Find the area of the shaded region.

- 1. 7sq. units
- 2. 8sq. units
- 3.5sq.units
- 4. 6sq.units
- 59. Count the number of triangles formed (in the given figure.)

1.11

2. 18

- 3.17
- 4. 20
- The probility of getting 53 sundays in leap year is 60.

PHYSICS

- 61. The refractive index of medium '1' relative to medium '2' is 4/3. Then what is the refractive index of medium 2 relative to medium 1?
 - 1. $\frac{4}{3}$

- 2. $\frac{3}{4}$
- $3.\frac{16}{9}$
- 4. $\frac{9}{16}$
- 62. X: Total internal reflection occurs only when a light ray travels from rarer to denser medium.
 - Y: Total internal reflection occurs only when a light ray travels from denser to rarer medium.
 - Z: Total internal reflection occurs only when light ray travels through interface.
 - 1. X and Y are false 2. Y and Z are false 3. X and Z are false 4. All are false
- 63. In the case of normal incidence

Which of the following are correct?

- i) $\angle i = 0$
- ii) $\angle r = 0$
- iii) $\angle d = 0$
- iv) $v_1 = v_2$
- 1 i

2. iii

- 3. i, ii, iii, iv
- 4. i, ii, iii
- 64. Which of the following absolute refractive index values is not possible?
 - 1. $\sqrt{2}$
- 2. $\sqrt{3}$
- 3. $\sqrt{2} 2$
- 4. $\sqrt{2} + 1$
- 65. A postage stamp placed under glass appears raised by 8 mm. If refractive index of glass is 1.5, calculate the actual thickness of glass slab.
 - 1. 12 mm
- 2. 24 mm
- 3.32 mm
- 4. 48 mm
- 66. Find the radii of curvature of a convexo concave convergent lens made of glass with refractive index n = 1.5 having focal length of 24 cm. One of the radii of curvature is double than the other.
 - 1. $R_1 = 6$ cm, $R_2 = 12$ cm

2. $R_1 = 10$ cm, $R_2 = 20$ cm

3. $R_1 = 15$ cm, $R_2 = 30$ cm

4. $R_1 = 24$ cm, $R_2 = 48$ cm

- An object placed 45cm away from a lens forms an image on screen placed 90cm on 67. the other side of the lens. A student identifies the type of lens and its focal length as
 - 1. Convex lens and its focal length –30 cm
 - 2. Convex lens and its focal length +30 cm
 - 3. Convex lens and its focal length –90 cm
 - 4. Convex lens and its focal length +90 cm
- A prism with an angle $A = 60^{\circ}$ produces an angle of minimum deviation of 30° . Find 68. the refractive index of material of the prism.
 - 1. $\sqrt{2}$
- 2. $\sqrt{3}$
- 4. $\sqrt{\frac{3}{2}}$
- Four students draw a ray diagram showing the dispersion through a glass prism. 69. Which of the following is correct?

70. The refractive index of the prism is given by

1.
$$\frac{\sin\left(\frac{A+D}{2}\right)}{\sin\left(\frac{A}{2}\right)}$$
 2.
$$\frac{\sin\left(\frac{A+D}{2}\right)}{\sin\left(\frac{D}{2}\right)}$$
 3.
$$\frac{\frac{\sin(A+D)}{2}}{\frac{\sin(A+D)}{2}}$$
 4.
$$\frac{\sin(\frac{D}{2})}{\sin\left(\frac{D}{2}\right)}$$

$$2. \frac{\sin\left(\frac{A+D}{2}\right)}{\sin\left(\frac{D}{2}\right)}$$

$$3. \frac{\frac{\sin(A+D)}{2}}{\frac{\sin A}{2}}$$

$$4. \frac{\sin(A+D)}{\sin\left(\frac{D}{2}\right)}$$

In the figure, the potential at A iswhen the potential at B is zero.

- 1. + 7 V
- 2. -7 V
- 4. +3 V
- 72. If the resistance of your body is 100000Ω , what would be the current that flows in your body when you touch the terminals of a 12 V battery?
 - 1. $12 \times 10^{-4} A$
- 2. $12 \times 10^{-5} A$ 3. $\frac{10^{5}}{12} A$
- 4. 12 A

73. Find the potential drop across and 3Ω resistance in the circuit.

- 1. 24 V
- 2. 3 V
- 3.12 V
- 4. 6 V

74. If voltmeter reads 20 volt, then find the ammeter reading.

- 1. 2 A
- 2. 1 A
- 3. $\frac{1}{2}$ A
- 4. 10 A

75. What is the power dissipated by each lamp of resistance 6Ω ?

- 1.3 W
- 2. 24 W
- 3.12 W
- 4. 6 W

76. What resistance must be connected to a 15 Ω resistance to provide an effective resistance of 6Ω ?

- 1.10Ω
- 2.21Ω
- 3.5Ω
- 4. 6Ω

77. A force of 8N acts on a rectangular conductor 20 cm long placed perpendicular to a magnetic field. Determine the magnetic field induction if the current in the conductor is 40A.

- 1. 4 tesla
- 2. 2 tesla
- 3.1 tesla
- 4. $\frac{1}{2}$ tesla

78. If a 50 cm long conductor is moving at a speed of 4 m/s is a 3 Tesla inductive field (uniform), then what is the maximum induced e.m.f?

- 1.6 V
- 2. 12 V
- 3.3 V
- 4. 24 V

79. In a circuit, 60V battery, three resistance $R_1 = 10\Omega$, $R_2 = 20\Omega$ and $R_3 = x\Omega$ are connected in series. If 1 ampere current flows in the circuit, find the resistance in R_3

- 1. 10Ω
- 2.30Ω
- 3.20Ω
- 4.60Ω

80.	An electric kettle is	s rated 3 KW, 250 V. I	s this kettle can be u	ised in a circuit which				
	contains a 13 A fus	e?						
	1. Yes	2. No	3. Data insufficient	4. None of these				
		CHE	MISTRY					
81.	The displacement r	eaction between iron ((III) oxide and a met	al X is used for welding				
	the rail tracks. Here	e X is:						
	1. Copper granules		2. Magnesium ri	ibbon				
	3. Sodium pellets		4. Aluminium d	ust				
82.	When ferrous sulph	nate is heated strongly	it undergoes decom	position to form ferric				
	oxide as a main pro	oduct accompanied by	a change in colour f	rom:				
	1. Blue to green	2. Green to blue	3. Green to brown	4. Green to yellow				
83.	All the methods me	entioned below can be	used to prevent the	food from getting rancid				
	except:							
	i. Storing the food i	in the air-tight contain	iers					
	ii. Storing the food	in refrigerator						
	iii. Keeping the food in clean and covered containers							
	iv. Always touching	g the food with clean h	nands					
	1. (i) and (ii)	2. (i) and (iii)	3. (i), (iii) and (iv)	4. (iii) and (iv)				
84.	In a chemical reacti	ion between sulphuric	acid and barium chl	oride solution the white				
	precipitates formed	is:						
	1. Hydrochloric aci	d 2. Barium sulphate	3. Chlorine	4. Sulphur				
85.	The atom of an elei	ment has electronic co	nfiguration 2, 8, 7.	To which of the following				
		be chemically similar?						
	1. N(7)	2. P(15)						
86.		ving elements ₂₀ Ca, ₈ O						
	Table?	e elements would you	expect to be in group	p 16 of the Periodic				
	4. ₈ O and ₁₆ S							
87.		ka–aluminium predict						
	properties of later of	liscovered element:						
	1. Scandium	2. Germanium	3. Gallium	4. Aluminium				

88.	What happens when	a solution of an acid	is mixed with a solu	ıtioı	n of a base in a test					
	tube? (i) Temperature of the solution decreases									
	(i) Temperature of t	he solution decreases								
	(ii) Temperature of the solution increases									
	(iii) Temperature of the solution remains the same									
	(iv) Salt formation takes place									
	1. (i) and (iv)	2. (i) and (iii)	3. (ii) only	4.	(ii) and (iv)					
89.	Sodium hydroxide t	urns phenolphthalein	solution							
	1. Pink	2. Yellow	3. Colourless	4.	Orange					
90.	Which of the follow	ing set of elements is	written in order of t	hei	r increasing metallic					
	character?									
	1. Na, Li, K	2. Be, Mg, Ca	3. Mg, Al, Si	4.	C, O, N					
91.	Which of the follow	ing statements is corr	rect about an aqueou	s sc	lution of an acid and					
	of a base?									
	(i) Higher the pH, st	ronger the acid								
	(ii) Higher the pH, v	weaker the acid								
	(iii) Lower the pH, s	stronger the base								
	(iv) Lower the pH, v	weaker the base								
	1. (i) and (iii)	2. (ii) and (iii)	3. (i) and (iv)	4.	(ii) and (iv)					
92.	Which one of the fo	llowing salts will diss	solve in water to for	m aı	n alkaline solution?					
	1. Potassium carbon	ate	2. Sodium chlor	ide						
	3. Sodium Sulphate		4. Potassium sulphate							
93.	Ethane, with the mo	lecular formula C ₂ H ₆	has							
	1. 6 covalent bonds	2. 7 covalent bonds	3.8 covalent bonds	s 4.	9 covalent bonds					
94.	Which of the follow	ing statements about	graphite and diamor	nd is	s true?					
		the same chemical r								
	•	ne degree of hardness								
	•	ne electrical conducti	ivity							
0.5	4. They have the sar	- 	C 1 C 11 4							
95.		ring is the molecular f	•							
	1. C ₄ H ₁₀	2. C ₄ H ₆	3. C ₄ H ₈	4.	C ₄ H ₄					

96.	Which of the follow	ring is the correct arra	ingement of the giv	en metals in decreasing						
	order of their reactivity?									
	Zinc, Iron, Magnesium, Sodium									
	1. $Zinc > Iron > Ma$	gnesium > Sodium	2. Sodium > M	agnesium > Zinc > Iron						
	3. Sodium > Zinc >	Magnesium > Iron	4. Sodium > M	agnesium > Iron > Zinc						
97.	An element X is sof	t and can be cut with	a knife. This is ver	y reactive to air and						
	cannot be kept open	in air. It reacts vigor	ously with water. Ic	dentify the element from						
	the following									
	1. Mg	2. Na	3. P	4. Ca						
98.	Which of the follow	ring pairs will give dis	splacement reaction	ns?						
	1. AgNO ₃ solution a	and Copper metal	2. FeSO ₄ soluti	on and Copper metal						
	3. CuSO ₄ solution a	nd Silver metal	4. NaCl solution and Copper metal							
99.	Example of an ampl	hoteric oxide is:								
	1. Na ₂ O	2. K ₂ O	3. Al ₂ O ₃	4. MgO						
100.	Which of the follow	ing statements are us	ually correct for ca	rbon compounds? These						
	(i) are good conduct	tors of electricity								
	(ii) are poor conduc	tors of electricity								
	(iii) have strong for	ces of attraction between	een their molecules	3						
	(iv) do not have stro	ong forces of attraction	n between their mo	lecules						
	1. (i) and (iii)	2. (ii) and (iii)	3. (i) and (iv)	4. (ii) and (iv)						
		THE E	ND							

$KEY_CBSE_\ (SET-1)$

MATHS

1) 3	2) 1	3) 4	4) 3	5) 2	6) 1	7) 4	8) 4	9) 2	10) 3
11) 3	12) 3	13) 3	14) 3	15) 2	16) 4	17) 3	18) 2	19) 3	20) 2
21) 3	22) 4	23) 3	24) 2	25) 2	26) 1	27) 4	28) 2	29) 3	30) 1
31) 2	32) 1	33) 4	34) 2	35) 4	36) 2	37) 4	38) 4	39) 1	40) 4
41) 4	42) 2	43) 2	44) 2	45) 2	46) 2	47) 2	48) 2	49) 3	50) 3
51) 3	52) 1	53) 1	54) 2	55) 2	56) 2	57) 3	58) 4	59) 4	60) 2

PHYSICS

61) 2	62) 3	63) 4	64) 3	65) 2	66) 1	67) 2	68) 1	69) 4	70) 1
71) 1	72) 2	73) 4	74) 3	75) 4	76) 1	77) 3	78) 1	79) 2	80) 1

CHEMISTRY

81) 4	82) 3	83) 4	84) 2	85) 4	86) 4	87) 3	88) 4	89) 1	90) 2
91) 4	92) 1	93) 2	94) 1	95) 3	96) 2	97) 2	98) 1	99) 3	100)4